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Simple topological graph

Vertices = points in the plane

Edges = curves connecting the points (vertices)

Simple = any two curves (edges) have at most one intersection
point, i.e. a common endpoint or a crossing.
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Simple topological graph

Vertices = points in the plane

Edges = curves connecting the points (vertices)

Simple = any two curves (edges) have at most one intersection
point, i.e. a common endpoint or a crossing.

Not Simple! Not Simple!
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Ramsey-type Theme

What large patterns can we find in complete simple topological
graphs?
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Example: Non-crossing structures

Theorem (Suk 2013, Fulek–Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains Ω(n
1
3 )

pairwise disjoint edges.

Later bound: n
1
2
−o(1) by Ruiz-Vargas 2015; Ω(n

1
2 ) by Aichholzer et

al. 2022.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a

non-crossing path of length Ω((log n)
1
6 ).

New bound: (log n)1−o(1) by Aichholzer et al. 2022 and Suk-Z.
2022 indepedndently.

Fact (Rafla 1988, Ábrego et al. 2015)

Every complete simple topological graph with at most 9 vertices
contains a non-crossing Hamiltonian cycle.
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Example: Non-crossing structures

Theorem (Suk 2013, Fulek–Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains Ω(n
1
3 )

pairwise disjoint edges.

Later bound: n
1
2
−o(1) by Ruiz-Vargas 2015; Ω(n

1
2 ) by Aichholzer et

al. 2022.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a

non-crossing path of length Ω((log n)
1
6 ).

New bound: (log n)1−o(1) by Aichholzer et al. 2022 and Suk-Z.
2022 indepedndently.

Conjecture (Rafla 1988)

Every complete simple topological graph with at most 9 vertices
contains a non-crossing Hamiltonian cycle.
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Example: Geometric graph

Vertices = plane points in general position, i.e. no collinear triples

Edges = straight lines connecting the points (vertices)

Convex = points (vertices) in convex position
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Example: Geometric graph

Question

What large patterns can we find in complete geometric graphs?

Ans: Complete convex geometric graphs.

Theorem (Erdős–Szekeres 1935)

Every set of
(2m−4
m−2

)
+ 1 plane points in general position contains a

subset of m elements in convex position.

Corollary

Every n-vertex complete geometric graph contains a m-vertex
complete convex geometric graph Cm with m = Ω(log n).
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Avoiding C5 in topological graphs?

Definition

Topological graphs G and H are weakly isomorphic if there is a
graph-theoretic isomorphism between them such that two edges in
G cross if and only if the corresponding edges in H cross.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Definition

Topological graphs G and H are weakly isomorphic if there is a
graph-theoretic isomorphism between them such that two edges in
G cross if and only if the corresponding edges in H cross.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Definition

Topological graphs G and H are weakly isomorphic if there is a
graph-theoretic isomorphism between them such that two edges in
G cross if and only if the corresponding edges in H cross.
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1
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3
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Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).
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Avoiding C5 in topological graphs?

Question
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Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

T5

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Avoiding C5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C5 in complete simple
topological graphs?

Ans: Yes! By complete twisted graphs Tm (Harborth–Mengersen
1992).

2 3 4 51

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Main result

However, we can’t avoid both C5 and T5.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a

topological subgraph on m ≥ Ω((log n)
1
8 ) vertices that is weakly

isomorphic to Cm or Tm.
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Main result

However, we can’t avoid both C5 and T5.

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has a topological

subgraph on m ≥ (log n)
1
4
−o(1) vertices that is weakly isomorphic

to Cm or Tm.

We also have long non-crossing path.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a
non-crossing path of length (log n)1−o(1).
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Set-up

Kn =
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Coloring triples

Observation (Pach–Solymosi–Tóth)

For vi < vj < vk , there are only 4 configurations.

0v

v v vi j k
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Coloring triples

Pach–Solymosi–Tóth: Color the triple (vi , vj , vk) using
{000, 010, 100, 001}

0v

v v vi j k

000

0v

v v vi j k

010

0v

v v vi j k

100

0v

v v vi j k

001
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Coloring triples

Fact: If there are m vertices with all triples monochromatic, then
they form a weakly-isomorphic copy of Cm or Tm.
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Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.

For vi < vj < vk < vℓ, if (vi , vj , vk) and (vj , vk , vℓ) have color 001,
then so does (vi , vj , vℓ) and (vi , vk , vℓ).

vi vj vk vl
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Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.

For vi < vj < vk < vℓ, if (vi , vj , vk) and (vj , vk , vℓ) have color 001,
then so does (vi , vj , vℓ) and (vi , vk , vℓ).

vi vj

vk
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Monotone path

Observation

The colors 100 and 001 are transitive.

Monochromatic monotone path: vertices u1 < u2 < · · · < um
all triples (ui , ui+1, ui+2) monochromatic.
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Monotone path

Observation
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Monotone path

Observation

The colors 100 and 001 are transitive.

Monochromatic monotone path: vertices u1 < u2 < · · · < um
all triples (ui , ui+1, ui+2) monochromatic.

0
v

001

Corollary

A mono-χ monotone path of length m in color 100 or 001 is a
mono-χ clique.
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000 and 010

However, 000 and 010 are not transitive.
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Forward path

Monochromatic forward path: vertices u1 < u2 < · · · < um such
that all triples (ui , ui+1, uj) are monochromatic.
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Forward path

Monochromatic forward path: vertices u1 < u2 < · · · < um such
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000 and 010

Lemma (essentially Pach–Solymosi–Tóth 2003)

If there are vertices u1 < u2 < · · · < um with all triples (ui , uj , uk)
in color 000 or 010, and forming a mono-χ forward path of length
m, then they form a mono-χ clique.
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Combinatorial statement

Theorem

Every coloring of all triples of [n], where n = 2O(m4(logm)2), by red,
blue, green, and yellow contains

a subset with only red or blue triples, and forming a mono-χ
forward path of length m; OR

a mono-χ monotone path of length m in green or yellow.

Letting red=000, blue=010, green=100, and yellow=001, this
implies our theorem of unavoidable patterns.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Combinatorial statement

Theorem

Every coloring of all triples of [n], where n = 2O(m4(logm)2), by red,
blue, green, and yellow contains

a subset with only red or blue triples, and forming a mono-χ
forward path of length m; OR

a mono-χ monotone path of length m in green or yellow.

Letting red=000, blue=010, green=100, and yellow=001, this
implies our theorem of unavoidable patterns.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Erdős–Szekeres-type results

Theorem (essentially Erdős–Szekeres 1935)

Let f (m) be the minimum n such that every 2-coloring of all
triples of [n] contains a mono-χ monotone path of length m. We
have f (m) =

(2m−4
m−2

)
+ 1.

Theorem (Fox–Pach–Sudakov–Suk 2012)

Every q-coloring of all triples of [n], where n = 2O(mq logm),
contains a mono-χ forward path of length m.

Fox–Pach–Sudakov–Suk stated this result for monotone paths.

The proof uses optimal strategies of online Ramsey games.

Our combinatorial statement can be proved by combining ideas
from above theorems.
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Non-crossing path

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a
non-crossing path of length (log n)1−o(1).

Proof.

v0

v1

v2

vn

. . . . . .
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Non-crossing path

We consider the sequence of curves emanating from v1 in
counterclockwise order.

0
v

1v 4
v

5
v

2
v

3
v

Figure: (v1v4, v1v3, v1v2, v1v5)
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Non-crossing path

Case 1: Non-crossing K2,m with m = (log n)2.

v0

v1

v2

vn

. . . . . .

Increasing sequence of length m.

Lemma (Fulek–Ruiz-Vargas 2015)

Inside a complete simple topological graph, the induced subgraph
on the m-part of a non-crossing K2,m contains a dense subgraph
weakly isomorphic to a x-monotone topological graph.
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Non-crossing path

Case 1: Non-crossing K2,m with m = (log n)2.

v0

v1

v2

vn

. . . . . .

Lemma (essentially Tóth 2000)

Every dense x-monotone simple topological graph on m vertices
contains a non-crossing path of length Ω(

√
m).
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Non-crossing path

Case 2: No non-crossing K2,m with m = (log n)2.

v0

u1

. . . . . .

u2

Decreasing sequence of length n/m.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Non-crossing path

Case 2: No non-crossing K2,m with m = (log n)2.

v0

u1

u2

Keep only the decreasing sequence.
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Non-crossing path

Case 2: No non-crossing K2,m with m = (log n)2.

v0

u1

u2
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Non-crossing path

Case 2: No non-crossing K2,m with m = (log n)2.

v0

u1

u2

Keep only the vertices inside or outside the blue triangle.
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Non-crossing path

Case 2: No non-crossing K2,m with m = (log n)2.

v0

u1

u2
. . . . . .

Repeat at next vertex.
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Non-crossing path

Case 2: A path u1, u2, . . . , ul of length (log n)1−o(1).

v0

u1

u2
. . . . . .

ulog n/ log log n
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Non-crossing path

Case 2: A path u1, u2, . . . , ul of length (log n)1−o(1).

ui

ui+1

uj
uj+1

uj and uj+1 can’t be separated by the triangle v0uiui+1.
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Non-crossing path

Case 2: A path u1, u2, . . . , ul of length (log n)1−o(1).

ui

ui+1

uj
uj+1
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Non-crossing path

Case 2: A path u1, u2, . . . , ul of length (log n)1−o(1).

ui uj
uj+1

ui+1uj and ui+1uj+1 can’t be increasing.
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Ramsey number?

Monochromatic forward path: vertices u1 < u2 < · · · < um such
that all triples (ui , ui+1, uj) are monochromatic.

Let g(m) be the minimum n such that every 2-coloring of all
triples of [n] contains a mono-χ forward path of length m.

Monochromatic backward path: vertices u1 < u2 < · · · < um
s.t. all triples (ui , uj , uj+1) are monochromatic.

Let h(m) be the minimum n such that every 2-coloring of all triples
of [n] contains a mono-χ forward or backward path of length m.

We know 2Ω(m) ≤ h(m) ≤ g(m) ≤ 2O(m2 logm).

Problem

Find better bounds for g(m) and h(m).
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Upper bound?

What’s the size of the largest weakly-isomorphic copy of Cm or Tm

inside every n-vertex complete simple topological graph?

Lower bound: (log n)
1
4
−o(1).

Upper bound: O(log n).

Construction 1: Take n points in the plane with no 2⌈log n⌉ points
in convex position (cf. Erdős–Szekeres 1935), and connect them
using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each
pair {i , j} ∈ [n], draw a half-circle connecting i and j , with this
half-circle either in the upper or lower half of the plane uniformly
randomly.
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in convex position (cf. Erdős–Szekeres 1935), and connect them
using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each
pair {i , j} ∈ [n], draw a half-circle connecting i and j , with this
half-circle either in the upper or lower half of the plane uniformly
randomly.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs



Upper bound?

What’s the size of the largest weakly-isomorphic copy of Cm or Tm

inside every n-vertex complete simple topological graph?

Lower bound: (log n)
1
4
−o(1). Upper bound: O(log n).

Construction 1: Take n points in the plane with no 2⌈log n⌉ points
in convex position (cf. Erdős–Szekeres 1935), and connect them
using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each
pair {i , j} ∈ [n], draw a half-circle connecting i and j , with this
half-circle either in the upper or lower half of the plane uniformly
randomly.

Problem

Find better upper bound constructions.
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Conclusion

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has a topological

subgraph on m ≥ (log n)
1
4
−o(1) vertices that is weakly isomorphic

to Cm or Tm.

Reduction to a problem of monotone and forward paths.

Arguments from Fox-Pach-Sudakov-Suk 2012.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a
non-crossing path of length (log n)1−o(1).

Rigidity of non-crossing K2,m and a greedy argument.

Thank you!!!
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P. Erdős, G. Szekeres, A combinatorial problem in geometry,
Compos. Math. 2 (1935), 463–470.

J. Fox, J. Pach, B. Sudakov, A. Suk, Erdős–Szekeres-type
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