Unavoidable patterns in complete simple topological graphs

Ji Zeng
(joint work with Andrew Suk)
Department of Mathematics
University of California San Diego

September 2022

Simple topological graph

Vertices $=$ points in the plane
Edges $=$ curves connecting the points (vertices)
Simple $=$ any two curves (edges) have at most one intersection point, i.e. a common endpoint or a crossing.

Simple topological graph

Vertices $=$ points in the plane
Edges $=$ curves connecting the points (vertices)
Simple $=$ any two curves (edges) have at most one intersection point, i.e. a common endpoint or a crossing.

Ramsey-type Theme

What large patterns can we find in complete simple topological graphs?

Example: Non-crossing structures

Theorem (Suk 2013, Fulek-Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains $\Omega\left(n^{\frac{1}{3}}\right)$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega\left(n^{\frac{1}{2}}\right)$ by Aichholzer et al. 2022.

Example: Non-crossing structures

Theorem (Suk 2013, Fulek-Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains $\Omega\left(n^{\frac{1}{3}}\right)$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega\left(n^{\frac{1}{2}}\right)$ by Aichholzer et al. 2022.

Theorem (Pach-Solymosi-Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega\left((\log n)^{\frac{1}{6}}\right)$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 indepedndently.

Example: Non-crossing structures

Theorem (Suk 2013, Fulek-Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains $\Omega\left(n^{\frac{1}{3}}\right)$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega\left(n^{\frac{1}{2}}\right)$ by Aichholzer et al. 2022.

Theorem (Pach-Solymosi-Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega\left((\log n)^{\frac{1}{6}}\right)$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 indepedndently.

Fact (Rafla 1988, Ábrego et al. 2015)

Every complete simple topological graph with at most 9 vertices contains a non-crossing Hamiltonian cycle.

Example: Non-crossing structures

Theorem (Suk 2013, Fulek-Ruiz-Vargas 2014)

Every n-vertex complete simple topological graph contains $\Omega\left(n^{\frac{1}{3}}\right)$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega\left(n^{\frac{1}{2}}\right)$ by Aichholzer et al. 2022.

Theorem (Pach-Solymosi-Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega\left((\log n)^{\frac{1}{6}}\right)$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 indepedndently.

Conjecture (Rafla 1988)

Every complete simple topological graph with at most 9 vertices contains a non-crossing Hamiltonian cycle.

Example: Geometric graph

Vertices $=$ plane points in general position, i.e. no collinear triples
Edges $=$ straight lines connecting the points (vertices)

Example: Geometric graph

Vertices $=$ plane points in general position, i.e. no collinear triples
Edges $=$ straight lines connecting the points (vertices)

Convex $=$ points (vertices) in convex position

Example: Geometric graph

Question

What large patterns can we find in complete geometric graphs?

Example: Geometric graph

Question

What large patterns can we find in complete geometric graphs?
Ans: Complete convex geometric graphs.

Example: Geometric graph

Question

What large patterns can we find in complete geometric graphs?
Ans: Complete convex geometric graphs.

Theorem (Erdős-Szekeres 1935)

Every set of $\binom{2 m-4}{m-2}+1$ plane points in general position contains a subset of m elements in convex position.

Example: Geometric graph

Question

What large patterns can we find in complete geometric graphs?
Ans: Complete convex geometric graphs.

Theorem (Erdős-Szekeres 1935)

Every set of $\binom{2 m-4}{m-2}+1$ plane points in general position contains a subset of m elements in convex position.

Corollary

Every n-vertex complete geometric graph contains a m-vertex complete convex geometric graph C_{m} with $m=\Omega(\log n)$.

Avoiding C_{5} in topological graphs?

Avoiding C_{5} in topological graphs?

Definition

Topological graphs G and H are weakly isomorphic if there is a graph-theoretic isomorphism between them such that two edges in G cross if and only if the corresponding edges in H cross.

Avoiding C_{5} in topological graphs?

Definition

Topological graphs G and H are weakly isomorphic if there is a graph-theoretic isomorphism between them such that two edges in G cross if and only if the corresponding edges in H cross.

Avoiding C_{5} in topological graphs?

Question
Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

T_{5}

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Avoiding C_{5} in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_{5} in complete simple topological graphs?

Ans: Yes! By complete twisted graphs T_{m} (Harborth-Mengersen 1992).

Main result

However, we can't avoid both C_{5} and T_{5}.

Theorem (Pach-Solymosi-Tóth 2003)

Every n-vertex complete simple topological graph contains a topological subgraph on $m \geq \Omega\left((\log n)^{\frac{1}{8}}\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Main result

However, we can't avoid both C_{5} and T_{5}.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \geq(\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Main result

However, we can't avoid both C_{5} and T_{5}.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \geq(\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

We also have long non-crossing path.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Set-up

Set-up

Set-up

Set-up

Set-up

Set-up

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Observation (Pach-Solymosi-Tóth)

For $v_{i}<v_{j}<v_{k}$, there are only 4 configurations.

Coloring triples

Pach-Solymosi-Tóth: Color the triple (v_{i}, v_{j}, v_{k}) using $\{000,010,100,001\}$

Coloring triples

Fact: If there are m vertices with all triples monochromatic, then they form a weakly-isomorphic copy of C_{m} or T_{m}.

Observation

The colors 100 and 001 are transitive.
For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.
For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.
For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.
For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.
For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Monotone path

Observation

The colors 100 and 001 are transitive.

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

001

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

001

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

Monotone path

Observation

The colors 100 and 001 are transitive.
Monochromatic monotone path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ all triples $\left(u_{i}, u_{i+1}, u_{i+2}\right)$ monochromatic.

Corollary

A mono- χ monotone path of length m in color 100 or 001 is a mono- χ clique.

000 and 010

However, 000 and 010 are not transitive.

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

000

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

Forward path

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

Forward path

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

Forward path

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

Forward path

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples (u_{i}, u_{i+1}, u_{j}) are monochromatic.

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)
If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)

If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)

If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)

If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)

If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

000 and 010

Lemma (essentially Pach-Solymosi-Tóth 2003)

If there are vertices $u_{1}<u_{2}<\cdots<u_{m}$ with all triples $\left(u_{i}, u_{j}, u_{k}\right)$ in color 000 or 010, and forming a mono- χ forward path of length m, then they form a mono- χ clique.

Combinatorial statement

Theorem

Every coloring of all triples of $[n]$, where $n=2^{O\left(m^{4}(\log m)^{2}\right) \text {, by red, }}$ blue, green, and yellow contains

- a subset with only red or blue triples, and forming a mono- χ forward path of length m; OR
- a mono- χ monotone path of length m in green or yellow.

Combinatorial statement

Theorem

Every coloring of all triples of $[n]$, where $n=2^{O\left(m^{4}(\log m)^{2}\right)}$, by red, blue, green, and yellow contains

- a subset with only red or blue triples, and forming a mono- χ forward path of length m; OR
- a mono- χ monotone path of length m in green or yellow.

Letting red $=000$, blue $=010$, green $=100$, and yellow $=001$, this implies our theorem of unavoidable patterns.

Erdős-Szekeres-type results

Theorem (essentially Erdős-Szekeres 1935)

Let $f(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ monotone path of length m. We have $f(m)=\binom{2 m-4}{m-2}+1$.

Erdős-Szekeres-type results

Theorem (essentially Erdős-Szekeres 1935)

Let $f(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ monotone path of length m. We have $f(m)=\binom{2 m-4}{m-2}+1$.

Theorem (Fox-Pach-Sudakov-Suk 2012)

Every q-coloring of all triples of [n], where $n=2^{O\left(m^{q} \log m\right)}$, contains a mono- χ forward path of length m.

- Fox-Pach-Sudakov-Suk stated this result for monotone paths.
- The proof uses optimal strategies of online Ramsey games.

Erdős-Szekeres-type results

Theorem (essentially Erdős-Szekeres 1935)

Let $f(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ monotone path of length m. We have $f(m)=\binom{2 m-4}{m-2}+1$.

Theorem (Fox-Pach-Sudakov-Suk 2012)

Every q-coloring of all triples of $[n]$, where $n=2^{O\left(m^{q} \log m\right)}$, contains a mono- χ forward path of length m.

- Fox-Pach-Sudakov-Suk stated this result for monotone paths.
- The proof uses optimal strategies of online Ramsey games.

Our combinatorial statement can be proved by combining ideas from above theorems.

Non-crossing path

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

Non-crossing path

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

Non-crossing path

We consider the sequence of curves emanating from v_{1} in counterclockwise order.

Figure: $\left(v_{1} v_{4}, v_{1} v_{3}, v_{1} v_{2}, v_{1} v_{5}\right)$

Non-crossing path

Case 1: Non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Increasing sequence of length m.

Non-crossing path

Case 1: Non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Lemma (Fulek-Ruiz-Vargas 2015)

Inside a complete simple topological graph, the induced subgraph on the m-part of a non-crossing $K_{2, m}$ contains a dense subgraph weakly isomorphic to a x-monotone topological graph.

Non-crossing path

Case 1: Non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Lemma (essentially Tóth 2000)

Every dense x-monotone simple topological graph on m vertices contains a non-crossing path of length $\Omega(\sqrt{m})$.

Non-crossing path

Case 2: No non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Decreasing sequence of length n / m.

Non-crossing path

Case 2: No non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Keep only the decreasing sequence.

Non-crossing path

Case 2: No non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Non-crossing path

Case 2: No non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Keep only the vertices inside or outside the blue triangle.

Non-crossing path

Case 2: No non-crossing $K_{2, m}$ with $m=(\log n)^{2}$.

Non-crossing path

Case 2: A path $u_{1}, u_{2}, \ldots, u_{\text {l }}$ of length $(\log n)^{1-o(1)}$.

Non-crossing path

Case 2: A path $u_{1}, u_{2}, \ldots, u_{\text {l }}$ of length $(\log n)^{1-o(1)}$.

u_{j} and u_{j+1} can't be separated by the triangle $v_{0} u_{i} u_{i+1}$.

Non-crossing path

Case 2: A path $u_{1}, u_{2}, \ldots, u_{l}$ of length $(\log n)^{1-o(1)}$.

Non-crossing path

Case 2: A path $u_{1}, u_{2}, \ldots, u_{l}$ of length $(\log n)^{1-o(1)}$.

Ramsey number?

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.
Let $g(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ forward path of length m.

Ramsey number?

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.
Let $g(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ forward path of length m.

Monochromatic backward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ s.t. all triples $\left(u_{i}, u_{j}, u_{j+1}\right)$ are monochromatic.

Let $h(m)$ be the minimum n such that every 2 -coloring of all triples of $[n]$ contains a mono- χ forward or backward path of length m.

Ramsey number?

Monochromatic forward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ such that all triples $\left(u_{i}, u_{i+1}, u_{j}\right)$ are monochromatic.
Let $g(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ forward path of length m.

Monochromatic backward path: vertices $u_{1}<u_{2}<\cdots<u_{m}$ s.t. all triples $\left(u_{i}, u_{j}, u_{j+1}\right)$ are monochromatic.

Let $h(m)$ be the minimum n such that every 2-coloring of all triples of $[n]$ contains a mono- χ forward or backward path of length m.
We know $2^{\Omega(m)} \leq h(m) \leq g(m) \leq 2^{O}\left(m^{2} \log m\right)$.

Problem

Find better bounds for $g(m)$ and $h(m)$.

Upper bound?

What's the size of the largest weakly-isomorphic copy of C_{m} or T_{m} inside every n-vertex complete simple topological graph?
Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$.

Upper bound?

What's the size of the largest weakly-isomorphic copy of C_{m} or T_{m} inside every n-vertex complete simple topological graph?
Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.

Upper bound?

What's the size of the largest weakly-isomorphic copy of C_{m} or T_{m} inside every n-vertex complete simple topological graph?
Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.
Construction 1: Take n points in the plane with no $2\lceil\log n\rceil$ points in convex position (cf. Erdős-Szekeres 1935), and connect them using straight lines.

Upper bound?

What's the size of the largest weakly-isomorphic copy of C_{m} or T_{m} inside every n-vertex complete simple topological graph?
Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.
Construction 1: Take n points in the plane with no $2\lceil\log n\rceil$ points in convex position (cf. Erdős-Szekeres 1935), and connect them using straight lines.
Construction 2: Let vertices be [n] placed on x-axis, and for each pair $\{i, j\} \in[n]$, draw a half-circle connecting i and j, with this half-circle either in the upper or lower half of the plane uniformly randomly.

Upper bound?

What's the size of the largest weakly-isomorphic copy of C_{m} or T_{m} inside every n-vertex complete simple topological graph?
Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.
Construction 1: Take n points in the plane with no $2\lceil\log n\rceil$ points in convex position (cf. Erdős-Szekeres 1935), and connect them using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each pair $\{i, j\} \in[n]$, draw a half-circle connecting i and j, with this half-circle either in the upper or lower half of the plane uniformly randomly.

Problem

Find better upper bound constructions.

Conclusion

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \geq(\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

- Reduction to a problem of monotone and forward paths.
- Arguments from Fox-Pach-Sudakov-Suk 2012.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

- Rigidity of non-crossing $K_{2, m}$ and a greedy argument.

Thank you!!!

References I

國 B．Ábrego，O．Aichholzer，S．Fernández－Merchant，T．Hackl， J．Pammer，A．Pilz，P．Ramos，G．Salazar，and B． Vogtenhuber，All good drawings of small complete graphs，In Proc．31st European Workshop on Computational Geometry， 2015，pages 57－60．
－O．Aichholzer，A．García，J．Tejel，B．Vogtenhuber，and A． Weinberger，Twisted ways to find plane structures in simple drawings of complete graphs，In Proc．38th Symp．Comput． Geometry，LIPIcs，Dagstuhl，Germany，2022，pages 5：1－5：18．

䍰 P．Erdős，G．Szekeres，A combinatorial problem in geometry， Compos．Math． 2 （1935），463－470．

䍰 J．Fox，J．Pach，B．Sudakov，A．Suk，Erdős－Szekeres－type theorems for monotone paths and convex bodies，Proc．Lond． Math．Soc． 105 （2012），953－982．

References II

围 R. Fulek, A. Ruiz-Vargas, Topological graphs: empty triangles and disjoint matchings, In Proc. 29th Symp. Comput. Geometry, ACM Press, New York, 2013, pages 259-265.
E H. Harborth and I. Mengersen, Drawings of the complete graph with maximum number of crossings. Congr. Numer. 88 (1992), 225-228.

國 J. Pach, J. Solymosi, G. Tóth, Unavoidable configurations in complete topological graphs, Disc. Comput. Geom. 30 (2003), 311-320.
(N. Rafla, The good drawings D_{n} of the complete graph K_{n}. PhD thesis, McGill University, Montreal, 1988. http://digitool.library.mcgill.ca/thesisfile75756.pdf.
A. Ruiz-Vargas, Many disjoint edges in topological graphs, Comput. Geom. 62 (2017), 1-13.

References III

國 M．Scheucher，personal communication．
囯 A．Suk，Disjoint edges in complete topological graphs，Disc． Comput．Geom． 49 （2013），280－286．

圊 G．Tóth，Note on geometric graphs，J．Combin．Theory Ser．A 89 （2000），126－132．

