Unavoidable patterns in complete simple topological graphs

Ji Zeng

(joint work with Andrew Suk)

Department of Mathematics University of California San Diego

September 2022

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs

Vertices = points in the plane

Edges = curves connecting the points (vertices)

Simple = any two curves (edges) have at most one intersection point, i.e. a common endpoint or a crossing.

Vertices = points in the plane

Edges = curves connecting the points (vertices)

Simple = any two curves (edges) have at most one intersection point, i.e. a common endpoint or a crossing.

Ramsey-type Theme

What large patterns can we find in complete simple topological graphs?

Every n-vertex complete simple topological graph contains $\Omega(n^{\frac{1}{3}})$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega(n^{\frac{1}{2}})$ by Aichholzer et al. 2022.

Every n-vertex complete simple topological graph contains $\Omega(n^{\frac{1}{3}})$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega(n^{\frac{1}{2}})$ by Aichholzer et al. 2022.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega((\log n)^{\frac{1}{6}})$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 independently.

Every n-vertex complete simple topological graph contains $\Omega(n^{\frac{1}{3}})$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega(n^{\frac{1}{2}})$ by Aichholzer et al. 2022.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega((\log n)^{\frac{1}{6}})$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 independently.

Fact (Rafla 1988, Ábrego et al. 2015)

Every complete simple topological graph with at most 9 vertices contains a non-crossing Hamiltonian cycle.

Every n-vertex complete simple topological graph contains $\Omega(n^{\frac{1}{3}})$ pairwise disjoint edges.

Later bound: $n^{\frac{1}{2}-o(1)}$ by Ruiz-Vargas 2015; $\Omega(n^{\frac{1}{2}})$ by Aichholzer et al. 2022.

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a non-crossing path of length $\Omega((\log n)^{\frac{1}{6}})$.

New bound: $(\log n)^{1-o(1)}$ by Aichholzer et al. 2022 and Suk-Z. 2022 independently.

Conjecture (Rafla 1988)

Every complete simple topological graph with at most 9 vertices contains a non-crossing Hamiltonian cycle.

Vertices = plane points in general position, i.e. no collinear triples Edges = straight lines connecting the points (vertices)

Vertices = plane points in general position, i.e. no collinear triples Edges = straight lines connecting the points (vertices)

Convex = points (vertices) in convex position

What large patterns can we find in complete geometric graphs?

What large patterns can we find in complete geometric graphs?

Ans: Complete convex geometric graphs.

What large patterns can we find in complete geometric graphs?

Ans: Complete convex geometric graphs.

Theorem (Erdős–Szekeres 1935)

Every set of $\binom{2m-4}{m-2} + 1$ plane points in general position contains a subset of m elements in convex position.

What large patterns can we find in complete geometric graphs?

Ans: Complete convex geometric graphs.

Theorem (Erdős–Szekeres 1935)

Every set of $\binom{2m-4}{m-2} + 1$ plane points in general position contains a subset of m elements in convex position.

Corollary

Every n-vertex complete geometric graph contains a m-vertex complete convex geometric graph C_m with $m = \Omega(\log n)$.

Avoiding C_5 in topological graphs?

Definition

Topological graphs G and H are **weakly isomorphic** if there is a graph-theoretic isomorphism between them such that two edges in G cross if and only if the corresponding edges in H cross.

Definition

Topological graphs G and H are **weakly isomorphic** if there is a graph-theoretic isomorphism between them such that two edges in G cross if and only if the corresponding edges in H cross.

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

Avoiding C_5 in topological graphs?

Question

Can we avoid weakly-isomorphic copies of C_5 in complete simple topological graphs?

However, we can't avoid both C_5 and T_5 .

Theorem (Pach–Solymosi–Tóth 2003)

Every n-vertex complete simple topological graph contains a topological subgraph on $m \ge \Omega((\log n)^{\frac{1}{8}})$ vertices that is weakly isomorphic to C_m or T_m .

However, we can't avoid both C_5 and T_5 .

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \ge (\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

However, we can't avoid both C_5 and T_5 .

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \ge (\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

We also have long non-crossing path.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Set-up

Set-up

Set-up

Observation (Pach-Solymosi-Tóth)

For $v_i < v_i < v_k$, there are only 4 configurations.

Observation (Pach–Solymosi–Tóth)

For $v_i < v_i < v_k$, there are only 4 configurations.

Observation (Pach–Solymosi–Tóth)

For $v_i < v_j < v_k$, there are only 4 configurations.

Observation (Pach–Solymosi–Tóth)

For $v_i < v_j < v_k$, there are only 4 configurations.

Observation (Pach-Solymosi-Tóth)

For $v_i < v_i < v_k$, there are only 4 configurations.

Observation (Pach-Solymosi-Tóth)

For $v_i < v_j < v_k$, there are only 4 configurations.

Pach–Solymosi–Tóth: Color the triple (v_i, v_j, v_k) using $\{000, 010, 100, 001\}$

Fact: If there are *m* vertices with all triples monochromatic, then they form a weakly-isomorphic copy of C_m or T_m .

The colors 100 and 001 are transitive.

Transitive colors: 100 and 001

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Observation

The colors 100 and 001 are transitive.

Monochromatic monotone path: vertices $u_1 < u_2 < \cdots < u_m$ all triples (u_i, u_{i+1}, u_{i+2}) monochromatic.

Corollary

A mono- χ monotone path of length m in color 100 or 001 is a mono- χ clique.

Ji Zeng (UC San Diego) Unavoidable patterns in complete simple topological graphs

However, 000 and 010 are not transitive.

Forward path

Theorem

Every coloring of all triples of [n], where $n = 2^{O(m^4(\log m)^2)}$, by red, blue, green, and yellow contains

- a subset with only red or blue triples, and forming a mono- χ forward path of length m; OR
- a mono- χ monotone path of length m in green or yellow.

Theorem

Every coloring of all triples of [n], where $n = 2^{O(m^4(\log m)^2)}$, by red, blue, green, and yellow contains

- a subset with only red or blue triples, and forming a mono- χ forward path of length m; OR
- a mono- χ monotone path of length m in green or yellow.

Letting red=000, blue=010, green=100, and yellow=001, this implies our theorem of unavoidable patterns.

Theorem (essentially Erdős–Szekeres 1935)

Let f(m) be the minimum n such that every 2-coloring of all triples of [n] contains a mono- χ monotone path of length m. We have $f(m) = \binom{2m-4}{m-2} + 1$.

Theorem (essentially Erdős–Szekeres 1935)

Let f(m) be the minimum n such that every 2-coloring of all triples of [n] contains a mono- χ monotone path of length m. We have $f(m) = \binom{2m-4}{m-2} + 1$.

Theorem (Fox–Pach–Sudakov–Suk 2012)

Every q-coloring of all triples of [n], where $n = 2^{O(m^q \log m)}$, contains a mono- χ forward path of length m.

- Fox-Pach-Sudakov-Suk stated this result for monotone paths.
- The proof uses optimal strategies of online Ramsey games.

Theorem (essentially Erdős–Szekeres 1935)

Let f(m) be the minimum n such that every 2-coloring of all triples of [n] contains a mono- χ monotone path of length m. We have $f(m) = \binom{2m-4}{m-2} + 1$.

Theorem (Fox–Pach–Sudakov–Suk 2012)

Every q-coloring of all triples of [n], where $n = 2^{O(m^q \log m)}$, contains a mono- χ forward path of length m.

- Fox-Pach-Sudakov-Suk stated this result for monotone paths.
- The proof uses optimal strategies of online Ramsey games.

Our combinatorial statement can be proved by combining ideas from above theorems.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

We consider the sequence of curves emanating from v_1 in counterclockwise order.

Figure: $(v_1v_4, v_1v_3, v_1v_2, v_1v_5)$

Case 1: Non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Increasing sequence of length m.

Case 1: Non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Lemma (Fulek–Ruiz-Vargas 2015)

Inside a complete simple topological graph, the induced subgraph on the m-part of a non-crossing $K_{2,m}$ contains a dense subgraph weakly isomorphic to a x-monotone topological graph.

Case 1: Non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Lemma (essentially Tóth 2000)

Every dense x-monotone simple topological graph on m vertices contains a non-crossing path of length $\Omega(\sqrt{m})$.

Case 2: No non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Decreasing sequence of length n/m.

Case 2: No non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Case 2: No non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Case 2: No non-crossing $K_{2,m}$ with $m = (\log n)^2$.

reep only the vertices inside of outside the blue thangle.

Case 2: No non-crossing $K_{2,m}$ with $m = (\log n)^2$.

Case 2: A path $u_1, u_2, ..., u_l$ of length $(\log n)^{1-o(1)}$.

Case 2: A path $u_1, u_2, ..., u_l$ of length $(\log n)^{1-o(1)}$.

 u_j and u_{j+1} can't be separated by the triangle $v_0 u_i u_{i+1}$.

Case 2: A path $u_1, u_2, ..., u_l$ of length $(\log n)^{1-o(1)}$.

Case 2: A path $u_1, u_2, ..., u_l$ of length $(\log n)^{1-o(1)}$.

Ramsey number?

Monochromatic forward path: vertices $u_1 < u_2 < \cdots < u_m$ such that all triples (u_i, u_{i+1}, u_j) are monochromatic.

Let g(m) be the minimum *n* such that every 2-coloring of all triples of [n] contains a mono- χ forward path of length *m*.

Monochromatic forward path: vertices $u_1 < u_2 < \cdots < u_m$ such that all triples (u_i, u_{i+1}, u_j) are monochromatic.

Let g(m) be the minimum *n* such that every 2-coloring of all triples of [n] contains a mono- χ forward path of length *m*.

Monochromatic backward path: vertices $u_1 < u_2 < \cdots < u_m$ s.t. all triples (u_i, u_j, u_{j+1}) are monochromatic.

Let h(m) be the minimum n such that every 2-coloring of all triples of [n] contains a mono- χ forward or backward path of length m.

Monochromatic forward path: vertices $u_1 < u_2 < \cdots < u_m$ such that all triples (u_i, u_{i+1}, u_j) are monochromatic.

Let g(m) be the minimum *n* such that every 2-coloring of all triples of [n] contains a mono- χ forward path of length *m*.

Monochromatic backward path: vertices $u_1 < u_2 < \cdots < u_m$ s.t. all triples (u_i, u_j, u_{j+1}) are monochromatic.

Let h(m) be the minimum n such that every 2-coloring of all triples of [n] contains a mono- χ forward or backward path of length m.

We know $2^{\Omega(m)} \leq h(m) \leq g(m) \leq 2^{O(m^2 \log m)}$.

Problem

Find better bounds for g(m) and h(m).

What's the size of the largest weakly-isomorphic copy of C_m or T_m inside every *n*-vertex complete simple topological graph? Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$.

What's the size of the largest weakly-isomorphic copy of C_m or T_m inside every *n*-vertex complete simple topological graph? Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.

What's the size of the largest weakly-isomorphic copy of C_m or T_m inside every *n*-vertex complete simple topological graph? Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.

Construction 1: Take *n* points in the plane with no $2\lceil \log n \rceil$ points in convex position (cf. Erdős–Szekeres 1935), and connect them using straight lines.

What's the size of the largest weakly-isomorphic copy of C_m or T_m inside every *n*-vertex complete simple topological graph? Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.

Construction 1: Take *n* points in the plane with no $2\lceil \log n \rceil$ points in convex position (cf. Erdős–Szekeres 1935), and connect them using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each pair $\{i, j\} \in [n]$, draw a half-circle connecting i and j, with this half-circle either in the upper or lower half of the plane uniformly randomly.

What's the size of the largest weakly-isomorphic copy of C_m or T_m inside every *n*-vertex complete simple topological graph? Lower bound: $(\log n)^{\frac{1}{4}-o(1)}$. Upper bound: $O(\log n)$.

Construction 1: Take *n* points in the plane with no $2\lceil \log n \rceil$ points in convex position (cf. Erdős–Szekeres 1935), and connect them using straight lines.

Construction 2: Let vertices be [n] placed on x-axis, and for each pair $\{i, j\} \in [n]$, draw a half-circle connecting i and j, with this half-circle either in the upper or lower half of the plane uniformly randomly.

Problem

Find better upper bound constructions.

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has a topological subgraph on $m \ge (\log n)^{\frac{1}{4}-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

- Reduction to a problem of monotone and forward paths.
- Arguments from Fox-Pach-Sudakov-Suk 2012.

Theorem (Aichholzer et al. 2022; Suk-Z. 2022)

Every n-vertex complete simple topological graph contains a non-crossing path of length $(\log n)^{1-o(1)}$.

• Rigidity of non-crossing $K_{2,m}$ and a greedy argument.

Thank you!!!

References I

- B. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pammer, A. Pilz, P. Ramos, G. Salazar, and B. Vogtenhuber, All good drawings of small complete graphs, In *Proc. 31st European Workshop on Computational Geometry*, 2015, pages 57–60.
- O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger, Twisted ways to find plane structures in simple drawings of complete graphs, In *Proc. 38th Symp. Comput. Geometry*, LIPIcs, Dagstuhl, Germany, 2022, pages 5:1–5:18.
- P. Erdős, G. Szekeres, A combinatorial problem in geometry, *Compos. Math.* **2** (1935), 463–470.
- J. Fox, J. Pach, B. Sudakov, A. Suk, Erdős–Szekeres-type theorems for monotone paths and convex bodies, *Proc. Lond. Math. Soc.* **105** (2012), 953–982.

References II

- R. Fulek, A. Ruiz-Vargas, Topological graphs: empty triangles and disjoint matchings, In *Proc. 29th Symp. Comput. Geometry*, ACM Press, New York, 2013, pages 259–265.
- H. Harborth and I. Mengersen, Drawings of the complete graph with maximum number of crossings. *Congr. Numer.* 88 (1992), 225–228.
- J. Pach, J. Solymosi, G. Tóth, Unavoidable configurations in complete topological graphs, *Disc. Comput. Geom.* **30** (2003), 311–320.
- N. Rafla, The good drawings D_n of the complete graph K_n. PhD thesis, McGill University, Montreal, 1988. http://digitool.library.mcgill.ca/thesisfile75756.pdf.
- A. Ruiz-Vargas, Many disjoint edges in topological graphs, *Comput. Geom.* **62** (2017), 1–13.

M. Scheucher, personal communication.

- A. Suk, Disjoint edges in complete topological graphs, *Disc. Comput. Geom.* **49** (2013), 280–286.
- G. Tóth, Note on geometric graphs, *J. Combin. Theory Ser. A* **89** (2000), 126–132.