Disjoint faces in simple topological graphs

Ji Zeng
Department of Mathematics
University of California San Diego

September 2023

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Can I make all the triangles to be small? Trivial, with or without collinear triples.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Can I make all the triangles to be small? Trivial, with or without collinear triples.

Can I make all the triangles to be large? Non-trival, Heilbronn's triangle problem.

Heilbronn's triangle problem: simple upper bound

There are $\Omega(n)$ disjoint triangles. Some triangle has area $O(1 / n)$.

Heilbronn's triangle problem

Problem (Heilbronn)

What is the asymptotic growth rate of $h(n)$, the area of the smallest triangle determined by n points in the unit square, when these points are chosen to maximize this area?

Komlós-Pintz-Szemerédi 1981: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$
Komlós-Pintz-Szemerédi 1982: $h(n)=\Omega\left(\frac{\log n}{n^{2}}\right)$

Heilbronn's triangle problem

Problem (Heilbronn)

What is the asymptotic growth rate of $h(n)$, the area of the smallest triangle determined by n points in the unit square, when these points are chosen to maximize this area?

Komlós-Pintz-Szemerédi 1981: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$
Komlós-Pintz-Szemerédi 1982: $h(n)=\Omega\left(\frac{\log n}{n^{2}}\right)$
Cohen-Pohoata-Zakharov 2023+: $h(n)=O\left(\frac{1}{n^{8}+\frac{1}{2000}}\right)$

Geometric graph

Vertices $=$ points in the plane in general position.
Edges $=$ straight line segments connecting the vertices.

Problem (Heilbronn)

What is the asymptotic growth rate of $h(n)$, the area of the smallest triangle generated by a n-vertex complete geometric graph drawn in the unit square, when the drawing maximizes this area?

Simple topological graph

Vertices $=$ points in the plane.
Edges $=$ curves connecting the vertices.
Simple $=$ any two edges intersect at most once, i.e. a common endpoint or a crossing.

Simple topological graph

Vertices $=$ points in the plane.
Edges $=$ curves connecting the vertices.
Simple $=$ any two edges intersect at most once, i.e. a common endpoint or a crossing.

Faces in topological graph

k-face: Open bounded cell enclosed by a plane k-cycle.

Faces in topological graph

k-face: Open bounded cell enclosed by a plane k-cycle.

Not k-faces:

Topological Heilbronn's problem

We consider a topological variant of Heilbronn's problem.

Problem

What is the asymptotic growth rate of $\tilde{h}(n)$, the area of the smallest 3-face generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Topological Heilbronn's problem

We consider a topological variant of Heilbronn's problem.

Problem

What is the asymptotic growth rate of $\tilde{h}(n)$, the area of the smallest 3-face generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Complete twisted graph

Observation (Hubard-Suk 2023)

For any $\epsilon>0$, we have $1-\epsilon<\tilde{h}(n)<1$.
Construction: complete twisted graph T_{n} (Harborth-Mengersen 1992)

Every triangle of T_{n} contains the cross \times in the illustration above.

Topological Heilbronn's problem for 4-faces

Problem

What is the asymptotic growth rate of $\tilde{h}_{4}(n)$, the area of the smallest 4-face generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Topological Heilbronn's problem for 4-faces

Problem

What is the asymptotic growth rate of $\tilde{h}_{4}(n)$, the area of the smallest 4-face generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Corollary (Hubard-Suk 2023)

$\tilde{h}_{4}(n) \leq O\left(1 / n^{1 / 3}\right)$.

Topological Heilbronn's problem for 4-faces

Theorem (Hubard-Suk 2023)

Every n-vertex complete simple topological graph generates at least $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint 4-faces.

Figure: Disjoint 4-faces can share boundary vertices or edges.

Main Result

Theorem (Z. 2023)
Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $\tilde{h}_{4}(n) \leq O(1 / n)$.

Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $\tilde{h}_{4}(n) \leq O(1 / n)$.

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

In particular, $\tilde{h}_{4}(n)=\Theta(1 / n)$.

Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $\tilde{h}_{4}(n) \leq O(1 / n)$.

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

In particular, $\tilde{h}_{4}(n)=\Theta(1 / n)$.

Theorem (Z. 2023)

For even $k \geq 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1 / 4-o(1)}$ pairwise disjoint k-faces.

Key phenomenon

Claim: If I complete this to a simple topological K_{4}, then at least two new edges won't cross the triangle.

Key phenomenon

Claim: If I complete this to a simple topological K_{4}, then at least two new edges won't cross the triangle.

Key phenomenon

Claim: If I complete this to a simple topological K_{4}, then at least two new edges won't cross the triangle.

Key phenomenon

Claim: If I complete this to a simple topological K_{4}, then at least two new edges won't cross the triangle.

Key phenomenon

Lemma (Fulek-Ruiz-Vargas 2013)

In a complete simple topological graph, suppose H is a plane connected subgraph and v is a vertex not in H, then there exist at least two edges between v and the vertices of H that do not cross H.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

4-face-inside

Claim: If I complete this to a simple topological K_{9}, then there is a new 4-face inside this already-drawn 4-face.

The claim is true!

4-face-inside Lemma

Lemma (Hubard-Suk 2023)

In a complete simple topological graph, suppose C is a plane k-cycle, if the face F enclosed by C contains at least $6 k$ vertices in its interior, then there is a 4-face that lies inside F.

4-face-inside Lemma

Remark

There is no 3-face-inside lemma!

4-face-inside Lemma

Remark

There is no 3-face-inside lemma!

Problem

Is there a 6-face-inside lemma?

Other consequences

The key phenomenon has many other consequences.

Theorem (Fulek-Ruiz-Vargas 2013)

Every n-vertex complete simple topological graph contains at least 2n/3 empty triangles.

Lemma (García-Pilz-Tejel 2021)

In a complete simple topological graph, every plane subgraph is contained in another plane subgraph that is biconnected.

Theorem (Aichholzer et al. 2022)

Every n-vertex complete simple topological graph contains at least $\Omega\left(n^{1 / 2}\right)$ pairwise disjoint edges.

Disjoint 4-faces

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

Proof Sketch

1. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).
2. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).
3. Fix a collection \mathcal{C} that is largest and finest (\mathcal{C}^{\prime} is finer than \mathcal{C} if any $c^{\prime} \in \mathcal{C}^{\prime}$ is contained in some $c \in \mathcal{C}$).

Proof Sketch

1. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).
2. Fix a collection \mathcal{C} that is largest and finest (\mathcal{C}^{\prime} is finer than \mathcal{C} if any $c^{\prime} \in \mathcal{C}^{\prime}$ is contained in some $c \in \mathcal{C}$).
3. Let $H=$ vertices and edges on the boundaries of the 4 -cells in \mathcal{C}.

Proof Sketch

Lemma (García-Pilz-Tejel 2021)

In a complete simple topological graph, every plane subgraph is contained in another plane subgraph that is biconnected.
4. Construct a biconnected plane graph H^{\prime} by only adding edges to H. Name the cells cut out by H^{\prime} as $f_{0}, f_{1}, \ldots, f_{k}$.

Proof Sketch

5. Maximality of $\mathcal{C}+4$-face-inside Lemma:
\# of vertices inside of $f_{i}<6$. \# of boundary vertices of f_{i}

$$
v\left(f_{i}\right)<6 \cdot\left|f_{i}\right|
$$

Proof Sketch

7. Majority of vertices of G is on the boundary: $v(H)>\Omega(n)$.

- $v\left(f_{i}\right)<6\left|f_{i}\right|$
- $\sum_{i}\left(v\left(f_{i}\right)+\left|f_{i}\right|\right) \geq n$
- $\sum_{i}\left|f_{i}\right|=2 e\left(H^{\prime}\right)$ and $e\left(H^{\prime}\right) \leq 3 v\left(H^{\prime}\right)-6$
- $v\left(H^{\prime}\right)=v(H)$

Proof Sketch

7. Majority of vertices of G is on the boundary: $v(H)>\Omega(n)$.

- $v\left(f_{i}\right)<6\left|f_{i}\right|$
- $\sum_{i}\left(v\left(f_{i}\right)+\left|f_{i}\right|\right) \geq n$
- $\sum_{i}\left|f_{i}\right|=2 e\left(H^{\prime}\right)$ and $e\left(H^{\prime}\right) \leq 3 v\left(H^{\prime}\right)-6$
- $v\left(H^{\prime}\right)=v(H)$

8. Vertices of H comes from 4-cells: $|\mathcal{C}| \geq v(H) / 4>\Omega(n)$.

Proof Sketch

7. Majority of vertices of G is on the boundary: $v(H)>\Omega(n)$.

- $v\left(f_{i}\right)<6\left|f_{i}\right|$
- $\sum_{i}\left(v\left(f_{i}\right)+\left|f_{i}\right|\right) \geq n$
- $\sum_{i}\left|f_{i}\right|=2 e\left(H^{\prime}\right)$ and $e\left(H^{\prime}\right) \leq 3 v\left(H^{\prime}\right)-6$
- $v\left(H^{\prime}\right)=v(H)$

8. Vertices of H comes from 4-cells: $|\mathcal{C}| \geq v(H) / 4>\Omega(n)$.
9. At most one cell in \mathcal{C} is unbounded, the rest are pairwise disjoint 4-faces.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Figure: Convex geometric graph C_{5}.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Figure: Convex geometric graph C_{5}.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Bound from another side

Observation (Z. 2023)

For every $n \geq 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1 / n)$.

Disjoint k-faces

Theorem (Z. 2023)

For even $k \geq 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1 / 4-o(1)}$ pairwise disjoint k-faces.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has an induced subgraph on $m \geq(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to either C_{m} or T_{m}.

Weak vs. Strong isomorphism

Weak isomorphism: graph isomorphism + crossing preserving.
Strong isomorphism: induced by homeomorphism of the sphere.

Weak vs. Strong isomorphism

Weak isomorphism: graph isomorphism + crossing preserving. Strong isomorphism: induced by homeomorphism of the sphere.

Figure: Triangle mutations can change the strong-isomorphism class.

Disjoint k-faces

Theorem (Gioan 2005/2022)

Two weakly isomorphic complete simple topological graphs are strongly isomorphic after a finite sequence of triangle mutations.

Observation: Triangle mutations preserve pairwise disjoint k-faces. Homeomorphisms of the sphere "almost" preserve pairwise disjoint k-faces.

Disjoint k-faces

Theorem (Gioan 2005/2022)

Two weakly isomorphic complete simple topological graphs are strongly isomorphic after a finite sequence of triangle mutations.

Observation: Triangle mutations preserve pairwise disjoint k-faces. Homeomorphisms of the sphere "almost" preserve pairwise disjoint k-faces.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has an induced subgraph on $m \geq(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to either C_{m} or T_{m}.

Fact: Either C_{m} or T_{m} has $\Omega(m)$ pairwise disjoint k-faces, for even k.

Disjoint k-faces

Theorem (Z. 2023)

For even $k \geq 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1 / 4-o(1)}$ pairwise disjoint k-faces.

Disjoint k-faces

Theorem (Z. 2023)

For even $k \geq 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1 / 4-o(1)}$ pairwise disjoint k-faces.

Problem

Can we improve this lower bound to n^{c} for some $c=c(k)>0$?

Problem

Is there a 6-face-inside lemma?

Thank you!!!

國 O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger.

Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs.
In 38th International Symposium on Computational Geometry (SoCG 2022), pages 5:1-5:18, 2022.

囲 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Drawings of K_{n} with the same rotation scheme are the same up to triangle-flips (Gioan's Theorem).
Australasian Journal of Combinatorics, 67(2):131-144, 2017.
E. A. Cohen, C. Pohoata, and D. Zakharov.

A new upper bound for the Heilbronn triangle problem. arXiv preprint arXiv:2305.18253, 2023.

References II

R R. Fulek and A. J. Ruiz-Vargas.
Topological graphs: empty triangles and disjoint matchings. In Proceedings of the twenty-ninth annual Symposium on Computational Geometry, pages 259-266, 2013.

围 A. García, A. Pilz, and J. Tejel.
On plane subgraphs of complete topological drawings. Ars Mathematica Contemporanea, 20(1):69-87, 2021.
國 E. Gioan.
Complete graph drawings up to triangle mutations. Discrete \& Computational Geometry, 67(4):985-1022, 2022.

References III

图 A．Hubard and A．Suk．
Disjoint Faces in Drawings of the Complete Graph and Topological Heilbronn Problems．
In 39th International Symposium on Computational Geometry （SoCG 2023），pages 41：1－41：15， 2023.

围 J．Komlós，J．Pintz，and E．Szemerédi．
A lower bound for Heilbronn＇s problem．
Journal of the London Mathematical Society，2（1）：13－24， 1982.

圊 K．F．Roth．
On a problem of Heilbronn．
Journal of the London Mathematical Society，1（3）：198－204， 1951.

References IV

A. J. Ruiz-Vargas.

Empty triangles in complete topological graphs.
Discrete \& Computational Geometry, 53(4):703-712, 2015.
围 A. Suk and J. Zeng.
Unavoidable patterns in complete simple topological graphs.
In Graph Drawing and Network Visualization, pages 3-15.
Springer, 2022.

