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Heilbronn’s triangle problem

Place n points in the unit square. And consider the triangles.
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Heilbronn’s triangle problem

Place n points in the unit square. And consider the triangles.

Can I make all the triangles to be small? Trivial, with or without
collinear triples.
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Heilbronn’s triangle problem

Place n points in the unit square. And consider the triangles.

Can I make all the triangles to be small? Trivial, with or without
collinear triples.

Can I make all the triangles to be large? Non-trival, Heilbronn’s
triangle problem.
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Heilbronn’s triangle problem: simple upper bound

There are Ω(n) disjoint triangles. Some triangle has area O(1/n).
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Heilbronn’s triangle problem

Problem (Heilbronn)

What is the asymptotic growth rate of h(n), the area of the
smallest triangle determined by n points in the unit square, when
these points are chosen to maximize this area?

Komlós-Pintz-Szemerédi 1981: h(n) = O
(

1

n
8
7−ϵ

)
Komlós-Pintz-Szemerédi 1982: h(n) = Ω

(
log n
n2

)

Cohen-Pohoata-Zakharov 2023+: h(n) = O
(

1

n
8
7+

1
2000

)
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Geometric graph

Vertices = points in the plane in general position.
Edges = straight line segments connecting the vertices.

Problem (Heilbronn)

What is the asymptotic growth rate of h(n), the area of the
smallest triangle generated by a n-vertex complete geometric graph
drawn in the unit square, when the drawing maximizes this area?
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Simple topological graph

Vertices = points in the plane.

Edges = curves connecting the vertices.

Simple = any two edges intersect at most once, i.e. a common
endpoint or a crossing.
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Simple topological graph

Vertices = points in the plane.

Edges = curves connecting the vertices.

Simple = any two edges intersect at most once, i.e. a common
endpoint or a crossing.

Not Simple! Not Simple!
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Faces in topological graph

k-face: Open bounded cell enclosed by a plane k-cycle.

Not k-faces:
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Topological Heilbronn’s problem

We consider a topological variant of Heilbronn’s problem.

Problem

What is the asymptotic growth rate of h̃(n), the area of the
smallest 3-face generated by a n-vertex complete
simple topological graph drawn in the unit square, when the
drawing maximizes this area?
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Complete twisted graph

Observation (Hubard–Suk 2023)

For any ϵ > 0, we have 1− ϵ < h̃(n) < 1.

Construction: complete twisted graph Tn (Harborth–Mengersen
1992)

2 3 4 51
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Complete twisted graph

Observation (Hubard–Suk 2023)

For any ϵ > 0, we have 1− ϵ < h̃(n) < 1.

Construction: complete twisted graph Tn (Harborth–Mengersen
1992)

v2 v3 v4 v5v1

Every triangle of Tn contains the cross × in the illustration above.

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



Topological Heilbronn’s problem for 4-faces

Problem

What is the asymptotic growth rate of h̃4(n), the area of the
smallest 4-face generated by a n-vertex complete
simple topological graph drawn in the unit square, when the
drawing maximizes this area?

Corollary (Hubard–Suk 2023)

h̃4(n) ≤ O(1/n1/3).
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Topological Heilbronn’s problem for 4-faces

Theorem (Hubard–Suk 2023)

Every n-vertex complete simple topological graph generates at
least Ω(n1/3) pairwise disjoint 4-faces.

Kn =

Figure: Disjoint 4-faces can share boundary vertices or edges.
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Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at
least Ω(n) pairwise disjoint 4-faces.

As a corollary, h̃4(n) ≤ O(1/n).

Observation (Z. 2023)

For every n ≥ 1, there is a n-vertex complete simple topological
graph drawn in the unit square such that every face it generates
has area at least Ω(1/n).

In particular, h̃4(n) = Θ(1/n).

Theorem (Z. 2023)

For even k ≥ 4, every n-vertex complete simple topological graph
generates at least (log n)1/4−o(1) pairwise disjoint k-faces.

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at
least Ω(n) pairwise disjoint 4-faces.

As a corollary, h̃4(n) ≤ O(1/n).

Observation (Z. 2023)

For every n ≥ 1, there is a n-vertex complete simple topological
graph drawn in the unit square such that every face it generates
has area at least Ω(1/n).

In particular, h̃4(n) = Θ(1/n).

Theorem (Z. 2023)

For even k ≥ 4, every n-vertex complete simple topological graph
generates at least (log n)1/4−o(1) pairwise disjoint k-faces.

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at
least Ω(n) pairwise disjoint 4-faces.

As a corollary, h̃4(n) ≤ O(1/n).

Observation (Z. 2023)

For every n ≥ 1, there is a n-vertex complete simple topological
graph drawn in the unit square such that every face it generates
has area at least Ω(1/n).

In particular, h̃4(n) = Θ(1/n).

Theorem (Z. 2023)

For even k ≥ 4, every n-vertex complete simple topological graph
generates at least (log n)1/4−o(1) pairwise disjoint k-faces.

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



Key phenomenon

Claim: If I complete this to a simple topological K4, then at least
two new edges won’t cross the triangle.
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Key phenomenon

Lemma (Fulek–Ruiz-Vargas 2013)

In a complete simple topological graph, suppose H is a plane
connected subgraph and v is a vertex not in H, then there exist at
least two edges between v and the vertices of H that do not cross
H.

nK =
v
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4-face-inside

Claim: If I complete this to a simple topological K9, then there is
a new 4-face inside this already-drawn 4-face.
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4-face-inside

Claim: If I complete this to a simple topological K9, then there is
a new 4-face inside this already-drawn 4-face.

The claim is true!

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



4-face-inside Lemma

Lemma (Hubard–Suk 2023)

In a complete simple topological graph, suppose C is a plane
k-cycle, if the face F enclosed by C contains at least 6k vertices in
its interior, then there is a 4-face that lies inside F .

nK =
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4-face-inside Lemma

Remark

There is no 3-face-inside lemma!

Problem

Is there a 6-face-inside lemma?
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Other consequences

The key phenomenon has many other consequences.

Theorem (Fulek–Ruiz-Vargas 2013)

Every n-vertex complete simple topological graph contains at least
2n/3 empty triangles.

Lemma (Garćıa–Pilz–Tejel 2021)

In a complete simple topological graph, every plane subgraph is
contained in another plane subgraph that is biconnected.

Theorem (Aichholzer et al. 2022)

Every n-vertex complete simple topological graph contains at least
Ω(n1/2) pairwise disjoint edges.

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs



Disjoint 4-faces

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at
least Ω(n) pairwise disjoint 4-faces.

Kn =
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Proof Sketch

1. Consider collections of pairwise disjoint “4-cells” (bounded or
unbounded cells enclosed by 4-cycles).

2. Fix a collection C that is largest and finest (C′ is finer than C if
any c ′ ∈ C′ is contained in some c ∈ C).
3. Let H = vertices and edges on the boundaries of the 4-cells in C.

Kn =
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Proof Sketch

Lemma (Garćıa–Pilz–Tejel 2021)

In a complete simple topological graph, every plane subgraph is
contained in another plane subgraph that is biconnected.

4. Construct a biconnected plane graph H ′ by only adding edges to
H. Name the cells cut out by H ′ as f0, f1, . . . , fk .
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Proof Sketch

5. Maximality of C + 4-face-inside Lemma:

# of vertices inside of fi < 6 · # of boundary vertices of fi

v(fi ) < 6 · |fi |
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Proof Sketch

7. Majority of vertices of G is on the boundary: v(H) > Ω(n).

v(fi ) < 6|fi |∑
i (v(fi ) + |fi |) ≥ n∑
i |fi | = 2e(H ′) and e(H ′) ≤ 3v(H ′)− 6

v(H ′) = v(H)

8. Vertices of H comes from 4-cells: |C| ≥ v(H)/4 > Ω(n).

9. At most one cell in C is unbounded, the rest are pairwise
disjoint 4-faces.
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Bound from another side

Observation (Z. 2023)

For every n ≥ 1, there is a n-vertex complete simple topological
graph drawn in the unit square such that every face it generates
has area at least Ω(1/n).

Figure: Convex geometric graph C5.
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Disjoint k-faces

Theorem (Z. 2023)

For even k ≥ 4, every n-vertex complete simple topological graph
generates at least (log n)1/4−o(1) pairwise disjoint k-faces.

v2 v3 v4 v5v1

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has an induced
subgraph on m ≥ (log n)1/4−o(1) vertices that is weakly isomorphic
to either Cm or Tm.
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Weak vs. Strong isomorphism

Weak isomorphism: graph isomorphism + crossing preserving.
Strong isomorphism: induced by homeomorphism of the sphere.

Figure: Triangle mutations can change the strong-isomorphism class.
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Disjoint k-faces

Theorem (Gioan 2005/2022)

Two weakly isomorphic complete simple topological graphs are
strongly isomorphic after a finite sequence of triangle mutations.

Observation: Triangle mutations preserve pairwise disjoint
k-faces. Homeomorphisms of the sphere “almost” preserve
pairwise disjoint k-faces.

Theorem (Suk–Z. 2022)

Every n-vertex complete simple topological graph has an induced
subgraph on m ≥ (log n)1/4−o(1) vertices that is weakly isomorphic
to either Cm or Tm.

Fact: Either Cm or Tm has Ω(m) pairwise disjoint k-faces, for
even k .
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Disjoint k-faces

Theorem (Z. 2023)

For even k ≥ 4, every n-vertex complete simple topological graph
generates at least (log n)1/4−o(1) pairwise disjoint k-faces.

Problem

Can we improve this lower bound to nc for some c = c(k) > 0?

Problem

Is there a 6-face-inside lemma?

Thank you!!!
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