Disjoint faces in simple topological graphs

Ji Zeng

Department of Mathematics University of California San Diego

September 2023

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs

Can I make all the triangles to be small? Trivial, with or without collinear triples.

Heilbronn's triangle problem

Place n points in the unit square. And consider the triangles.

Can I make all the triangles to be small? Trivial, with or without collinear triples.

Can I make all the triangles to be large? Non-trival, Heilbronn's triangle problem.

Heilbronn's triangle problem: simple upper bound

There are $\Omega(n)$ disjoint triangles. Some triangle has area O(1/n).

Problem (Heilbronn)

What is the asymptotic growth rate of h(n), the area of the smallest triangle determined by n points in the unit square, when these points are chosen to maximize this area?

Komlós-Pintz-Szemerédi 1981: $h(n) = O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$

Komlós-Pintz-Szemerédi 1982: $h(n) = \Omega\left(\frac{\log n}{n^2}\right)$

Problem (Heilbronn)

What is the asymptotic growth rate of h(n), the area of the smallest triangle determined by n points in the unit square, when these points are chosen to maximize this area?

Komlós-Pintz-Szemerédi 1981: $h(n) = O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$

Komlós-Pintz-Szemerédi 1982: $h(n) = \Omega\left(\frac{\log n}{n^2}\right)$

Cohen-Pohoata-Zakharov 2023+: $h(n) = O\left(\frac{1}{n^{\frac{8}{7}+\frac{1}{2000}}}\right)$

Vertices = points in the plane in general position. Edges = straight line segments connecting the vertices.

Problem (Heilbronn)

What is the asymptotic growth rate of h(n), the area of the smallest triangle generated by a n-vertex complete geometric graph drawn in the unit square, when the drawing maximizes this area?

Vertices = points in the plane.

Edges = curves connecting the vertices.

Simple = any two edges intersect at most once, i.e. a common endpoint or a crossing.

Vertices = points in the plane.

Edges = curves connecting the vertices.

Simple = any two edges intersect at most once, i.e. a common endpoint or a crossing.

Faces in topological graph

k-face: Open bounded cell enclosed by a plane *k*-cycle.

Faces in topological graph

k-face: Open bounded cell enclosed by a plane *k*-cycle.

Topological Heilbronn's problem

We consider a topological variant of Heilbronn's problem.

Problem

What is the asymptotic growth rate of $\tilde{h}(n)$, the area of the smallest <u>3-face</u> generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Topological Heilbronn's problem

We consider a topological variant of Heilbronn's problem.

Problem

What is the asymptotic growth rate of $\tilde{h}(n)$, the area of the smallest <u>3-face</u> generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

Complete twisted graph

Observation (Hubard–Suk 2023)

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

For any $\epsilon > 0$, we have $1 - \epsilon < \tilde{h}(n) < 1$.

Construction: complete twisted graph T_n (Harborth–Mengersen 1992)

Every triangle of T_n contains the cross \times in the illustration above.

Problem

What is the asymptotic growth rate of $\tilde{h}_4(n)$, the area of the smallest <u>4-face</u> generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Problem

What is the asymptotic growth rate of $\tilde{h}_4(n)$, the area of the smallest <u>4-face</u> generated by a n-vertex complete simple topological graph drawn in the unit square, when the drawing maximizes this area?

Corollary (Hubard–Suk 2023)

 $\tilde{h}_4(n) \leq O(1/n^{1/3}).$

Topological Heilbronn's problem for 4-faces

Theorem (Hubard–Suk 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n^{1/3})$ pairwise disjoint 4-faces.

Figure: Disjoint 4-faces can share boundary vertices or edges.

Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $ilde{h}_4(n) \leq O(1/n).$

Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $ilde{h}_4(n) \leq O(1/n).$

Observation (Z. 2023)

For every $n \ge 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1/n)$.

In particular, $\tilde{h}_4(n) = \Theta(1/n)$.

Main Result

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

As a corollary, $ilde{h}_4(n) \leq O(1/n).$

Observation (Z. 2023)

For every $n \ge 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1/n)$.

In particular, $ilde{h}_4(n) = \Theta(1/n)$.

Theorem (Z. 2023)

For even $k \ge 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1/4-o(1)}$ pairwise disjoint k-faces.

Key phenomenon

Lemma (Fulek-Ruiz-Vargas 2013)

In a complete simple topological graph, suppose H is a plane connected subgraph and v is a vertex not in H, then there exist at least two edges between v and the vertices of H that do not cross H.

The claim is true!

Lemma (Hubard–Suk 2023)

In a complete simple topological graph, suppose C is a plane k-cycle, if the face F enclosed by C contains at least 6k vertices in its interior, then there is a 4-face that lies inside F.

4-face-inside Lemma

Remark

There is no 3-face-inside lemma!

4-face-inside Lemma

Remark

There is no 3-face-inside lemma!

Problem

Is there a 6-face-inside lemma?

Ji Zeng (UC San Diego) Disjoint faces in simple topological graphs

The key phenomenon has many other consequences.

Theorem (Fulek–Ruiz-Vargas 2013)

Every n-vertex complete simple topological graph contains at least 2n/3 empty triangles.

Lemma (García–Pilz–Tejel 2021)

In a complete simple topological graph, every plane subgraph is contained in another plane subgraph that is biconnected.

Theorem (Aichholzer et al. 2022)

Every n-vertex complete simple topological graph contains at least $\Omega(n^{1/2})$ pairwise disjoint edges.

Theorem (Z. 2023)

Every n-vertex complete simple topological graph generates at least $\Omega(n)$ pairwise disjoint 4-faces.

1. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).

1. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).

2. Fix a collection C that is largest and finest (C' is finer than C if any $c' \in C'$ is contained in some $c \in C$).

1. Consider collections of pairwise disjoint "4-cells" (bounded or unbounded cells enclosed by 4-cycles).

2. Fix a collection C that is largest and finest (C' is finer than C if any $c' \in C'$ is contained in some $c \in C$).

3. Let H = vertices and edges on the boundaries of the 4-cells in C.

Lemma (García–Pilz–Tejel 2021)

In a complete simple topological graph, every plane subgraph is contained in another plane subgraph that is biconnected.

4. Construct a biconnected plane graph H' by only adding edges to H. Name the cells cut out by H' as f_0, f_1, \ldots, f_k .

5. Maximality of C + 4-face-inside Lemma:

of vertices inside of $f_i < 6 \cdot \#$ of boundary vertices of f_i $v(f_i) < 6 \cdot |f_i|$

- 7. Majority of vertices of G is on the boundary: $v(H) > \Omega(n)$.
 - $v(f_i) < 6|f_i|$
 - $\sum_i (v(f_i) + |f_i|) \ge n$
 - $\sum_i |f_i| = 2e(H')$ and $e(H') \leq 3v(H') 6$
 - v(H') = v(H)

- 7. Majority of vertices of G is on the boundary: $v(H) > \Omega(n)$.
 - $v(f_i) < 6|f_i|$
 - $\sum_i (v(f_i) + |f_i|) \ge n$
 - $\sum_i |f_i| = 2e(H')$ and $e(H') \leq 3v(H') 6$

•
$$v(H') = v(H)$$

8. Vertices of *H* comes from 4-cells: $|C| \ge v(H)/4 > \Omega(n)$.

- 7. Majority of vertices of G is on the boundary: $v(H) > \Omega(n)$.
 - $v(f_i) < 6|f_i|$
 - $\sum_i (v(f_i) + |f_i|) \ge n$
 - $\sum_i |f_i| = 2e(H')$ and $e(H') \leq 3v(H') 6$

•
$$v(H') = v(H)$$

8. Vertices of *H* comes from 4-cells: $|C| \ge v(H)/4 > \Omega(n)$.

9. At most one cell in $\ensuremath{\mathcal{C}}$ is unbounded, the rest are pairwise disjoint 4-faces.

Observation (Z. 2023)

For every $n \ge 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1/n)$.

Figure: Convex geometric graph C_5 .

Bound from another side

Observation (Z. 2023)

For every $n \ge 1$, there is a n-vertex complete simple topological graph drawn in the unit square such that every face it generates has area at least $\Omega(1/n)$.

Figure: Convex geometric graph C_5 .

Observation (Z. 2023)

Bound from another side

Observation (Z. 2023)

Bound from another side

Observation (Z. 2023)

Observation (Z. 2023)

Theorem (Z. 2023)

For even $k \ge 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1/4-o(1)}$ pairwise disjoint k-faces.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has an induced subgraph on $m \ge (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to either C_m or T_m .

Weak isomorphism: graph isomorphism + crossing preserving. Strong isomorphism: induced by homeomorphism of the sphere.

Weak vs. Strong isomorphism

Weak isomorphism: graph isomorphism + crossing preserving. Strong isomorphism: induced by homeomorphism of the sphere.

Figure: Triangle mutations can change the strong-isomorphism class.

Theorem (Gioan 2005/2022)

Two weakly isomorphic complete simple topological graphs are strongly isomorphic after a finite sequence of triangle mutations.

Observation: Triangle mutations preserve pairwise disjoint k-faces. Homeomorphisms of the sphere "almost" preserve pairwise disjoint k-faces.

Theorem (Gioan 2005/2022)

Two weakly isomorphic complete simple topological graphs are strongly isomorphic after a finite sequence of triangle mutations.

Observation: Triangle mutations preserve pairwise disjoint k-faces. Homeomorphisms of the sphere "almost" preserve pairwise disjoint k-faces.

Theorem (Suk-Z. 2022)

Every n-vertex complete simple topological graph has an induced subgraph on $m \ge (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to either C_m or T_m .

Fact: Either C_m or T_m has $\Omega(m)$ pairwise disjoint k-faces, for even k.

Theorem (Z. 2023)

For even $k \ge 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1/4-o(1)}$ pairwise disjoint k-faces.
Theorem (Z. 2023)

For even $k \ge 4$, every n-vertex complete simple topological graph generates at least $(\log n)^{1/4-o(1)}$ pairwise disjoint k-faces.

Problem

Can we improve this lower bound to n^c for some c = c(k) > 0?

Problem

Is there a 6-face-inside lemma?

Thank you!!!

References I

 O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger.

Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs.

In 38th International Symposium on Computational Geometry (SoCG 2022), pages 5:1–5:18, 2022.

- A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar.
 Drawings of K_n with the same rotation scheme are the same up to triangle-flips (Gioan's Theorem).
 Australasian Journal of Combinatorics, 67(2):131–144, 2017.
- A. Cohen, C. Pohoata, and D. Zakharov.
 A new upper bound for the Heilbronn triangle problem. arXiv preprint arXiv:2305.18253, 2023.

🔋 R. Fulek and A. J. Ruiz-Vargas.

Topological graphs: empty triangles and disjoint matchings. In *Proceedings of the twenty-ninth annual Symposium on Computational Geometry*, pages 259–266, 2013.

 A. García, A. Pilz, and J. Tejel.
 On plane subgraphs of complete topological drawings. Ars Mathematica Contemporanea, 20(1):69–87, 2021.

E. Gioan.

Complete graph drawings up to triangle mutations. Discrete & Computational Geometry, 67(4):985–1022, 2022.

A. Hubard and A. Suk.

Disjoint Faces in Drawings of the Complete Graph and Topological Heilbronn Problems.

In 39th International Symposium on Computational Geometry (SoCG 2023), pages 41:1–41:15, 2023.

 J. Komlós, J. Pintz, and E. Szemerédi.
 A lower bound for Heilbronn's problem.
 Journal of the London Mathematical Society, 2(1):13–24, 1982.

K. F. Roth.

On a problem of Heilbronn.

Journal of the London Mathematical Society, 1(3):198–204, 1951.

A. J. Ruiz-Vargas.

Empty triangles in complete topological graphs.

Discrete & Computational Geometry, 53(4):703–712, 2015.

A. Suk and J. Zeng.

Unavoidable patterns in complete simple topological graphs. In *Graph Drawing and Network Visualization*, pages 3–15. Springer, 2022.